Why should you read this?

This brochure is a snapshot of the quality of the water that we provided to you last year. Included are details about where your water comes from, what it contains, and how it compares to Environmental Protection Agency (EPA) and State standards. We are committed to providing you with quality water and to keep you fully aware of the efforts that are made continually to improve your water system. For more information please contact Stephen Gillis, Water Treatment Plant Superintendent, or attend City Commission meetings scheduled at 5:30 p.m. on the second and fourth Tuesday of every month at the Law Enforcement Center, 201 N. Pine.

Where does it come from?

Your water comes from four wells drilled into the Roubidoux formation of the Ozark Aquifer. We treat your water to remove several contaminants and also add disinfectant to protect you against microbial contaminants. An assessment of our source water is completed. For results of the assessment, please contact us or download the results at www.kdhe.state.ks.us/nps.

For more information:

John H. Bailey P.E. Ph.D.

Director of Public Utilities (620) 240-5126

Email: john.bailey@pittks.org

Stephen Gillis

Water Treatment Plant

Superintendent

(620) 230-5630

Email: stephen.gillis@pittks.org

Environmental Protection
Agency's (EPA) Safe Drinking
Water Hotline:

(800) 426-4791

201 W. 4th STREET
PITTSBURG, KS 66762-0688
www.pittks.org

A message from the Environmental Protection Agency (EPA)

To ensure that tap water is safe to drink, the EPA prescribes limits on the amount of certain contaminants in water from public water systems.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA Safe Drinking Hotline (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons who can particularly be at risk for infections include those who have undergone chemotherapy or organ transplants, people with HIV/AIDS or other immune system disorders, and some elderly persons and infants. These people should seek advice about the quality of drinking water from their health care providers. The EPA / Center for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the EPA Hotline or their web site. www.epa.gov

This annual Consumer Confidence Report (CCR), required by the Safe Drinking Water Act (SDWA), tells you where your water comes from, what our tests show about it, and other important facts you should know about drinking water.

The Consumer Confidence Report is based upon tests conducted by the Kansas Department of Health & Environment (KDHE). Tests were conducted on the finished water produced by the City Of Pittsburg's Water Treatment Plant (WTP).

How often is Pittsburg's water tested? Certified staff at the City of Pittsburg's Water Treatment Plant conduct the following tests:

Daily: Hardness, Alkalinity, Turbidity, Fluoride and Phosphate. (every 4 hours)

Hourly: ph and Chlorine residual

The Kansas Department of Health and Environment (KDHE) in Topeka conduct the following tests:

Monthly: Bacteriological (20 samples collected from the distribution system)

Quarterly: Fluoride

Annually: Trihalomethanes, Volatile Or-

ganic Chemicals, Organic Analysis and Nitrate

Tri-annually: Lead, Copper, Synthetic Or-

ganic Chemicals, and Inor-

ganic analysis

How much water does Pittsburg

Treat? In 2013 the water plant pumped 845,797,000 gallons of water from our wells. There was 833,077,000 gallons of treated water that was pumped into the distribution system. This was an average of 2,282,402 gallons per day. Water sold amounted to 1,796,451 gallons per day, with a total water loss of 21%.

Water Quality Information:

The Total Coliform Rule requires water systems to meet a stricter limit for coliform bacteria. Coliform bacteria are usually harmless, but their presence in water can be an indication of disease -causing bacteria. When coliform bacteria are found, special follow-up tests are done to determine if harmful bacteria are present in the water supply. If this limit is exceeded, the water supplier must notify the public by newspaper, television or radio. To comply with the stricter regulations, we have increased the average amount of chlorine in the distribution system.

Lead in drinking water is rarely the sole cause of lead poisoning, but it can add to a person's total lead exposure. All potential sources of lead in the household should be identified and removed, replaced or reduced. Infants & young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of the materials used in you home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and/or flush your tap for 30 seconds to 2 minutes before using tap water.

THE CITY OF PITTSBURG'S
DRINKING WATER MEETS OR
SURPASSES ALL FEDERAL AND
STATE DRINKING-WATER
STANDARDS.

Water Quality Data

City of Pittsburg, Kansas 66762

Unless noted, the data presented is from testing done January 1st. December 31st, 2013. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The state requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, is more than one year old. All regulated and some unregulated contaminants that were detected in the water, even in the most minute traces, are included. The Key to Table explains our findings, and there is a key to units of measurement below. Maximum Contaminant Level (MCL) is defined as "the highest level of a contaminant that is allowed in drinking water". Maximum Contaminant Level Goal (MCLG) is "the level of a contaminant in drinking water below which there is no known or expected risk to health". MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCLGs allow for a margin of safety. The tables list the name of each substance, unit, MCLs, the amount detected, and MCLGs. SMCLs are recommended level for contaminant that is not regulated and has no MCL.

Contaminants that may be present in source water includes:

- Microbial contaminants, such as viruses and bacteria
- Inorganic contaminants, such as salts and metals
- Pesticides, which may come from a variety of sources such as agriculture, urban storm water runoff and residential uses
- Organic chemical contaminants from industrial or petroleum use
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities

The bottom line is that the water that is provided to you is safe.

Detected Regulated Contaminants							
Inorganic Contaminants	Unit	Highest Value	MCL	MCLG	Range Low (low/high)	Sampling Date	Likely Source of Contamination
Barium	ppm	0.023	2	2	0.023	04/13	Discharge form metal refineries
Fluoride	ppm	0.46	4	4	0.41-0.46	2013	Erosion of Natural Deposits, additive which promotes strong teeth
Arsenic	ppb	1.2	10	10	1.2	04/13	Soil Run Off
Selenium	ppb	3.6	50	50	3.6	04/13	Erosion of Natural Deposits
Chromium	Ppb	1.3	4	4	1.3	04/13	Discharge from steel and pulp mills
Volatile Organic Contaminants	Unit	Highest Value	MCL	MCLG	(low/high) Range	Sampling Date	Likely Source of Contamination
TTHM-Total (Trihalomethanes)	ppb	30	80	0	17-30	2013	Chlorination byproduct
HAA5	ppb	6	60	0	4.3-6.1	2013	Chlorination byproduct

Microbiological Contaminants							
Analyte	Unit	Level Detected	MCL	MCLG	Violation	Sampling Date	Likely Source of Contamination
Total Coliform	samples	0		0	N	20 / month	Naturally present in the environment.
Radionuclides							
Analyte	Unit	Highest Value	MCL	MCLG	Range	Sampling Date	Likely Source of Contamination
Combined Radium	pCi/L	1.9	5	0	1.9	10/09	Erosion of natural deposits.
Metals in Drinki	ng Wate	r from Taps					
Analyte	Unit	90th Percentile	MCL	MCLG	Violation	Sampling Date	Likely Source of Contamination
Lead	ppb	ND	AL-15	0	N	09/13	Corrosion of household plumbing systems.
Copper	ppm	0.049	AL-1.3	0	N	09/13	Corrosion of household plumbing systems.

Detected Secondary (Unregulated) Water Quality							
Parameter	Unit	Highest Value	Range	SMCL	Sampling Date		
Aluminum	ppm	0.022	0.022	0.05	04/13		
Calcium	ppm	13	13	200	04/13		
Magnesium	ppm	14	14	150	04/13		
Sodium	ppm	87	87	100	04/13		
Potassium	ppm	5.2	5.2	100	04/13		
Chloride	ppm	110	110	250	04/13		
Sulfate	ppm	47	47	250	04/13		
Total Hardness	ppm	91	91	400	04/13		
Alkalinity as CACO ₃	ppm	79.3	79.3	300	04/13		
рН	ph Units	8.3	8.3	8.5	04/13		
Specific Conductivity	μmho/cm	640	640	1500	04/13		
Total Dissolved Solids	ppm	330	330	500	04/13		
Total Phosphorus (P)	ppm	0.19	0.19	5	04/13		
Silica	ppm	8	8	50	04/13		

Key to Table	
Key	Description
MCLG	Maximum Contaminant Level Goal
ppb	Parts per billion, or micrograms per Liter (µg/L)
ppm	Parts per million, or milligrams per Liter (mg/L)
NTU	Nephelometric Turbidity Unit
SMCL	Secondary Maximum Contaminant Level
ц	Langelier's Index
μmho/cm	Micromhos per centimeter
N/D	Non-Detected
WTP	Water Treatment Plant
AL	Action Level = Any samples that contain over this amount of a contaminant require corrosion control action by the utilities.
90 th Percentile	In a ranking of the 10 samples with the highest level of a contaminant, the ninth highest sample is the value that represents the 90th percentile